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A partial fraction decomposition of the Fermi function resulting in a finite sum over simple poles is pro-
posed. This allows for efficient calculations involving the Fermi function in various contexts of electronic-
structure or electron-transport theories. The proposed decomposition converges in a well-defined region faster
than exponential and is thus superior to the standard Matsubara expansion.
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I. INTRODUCTION

Many problems in electronic-structure and electron-
transport calculations involve the evaluation of integrals con-
taining the Fermi function. These are in general difficult to
compute and therefore several approximation schemes have
been developed.1–7 Among them the Sommerfeld expansion1

and the Matsubara expansion2 being the most prominent
ones. While the former is by construction useful for low
temperatures, the latter provides, in principle, a way to cover
the range from low to high temperatures. Moreover, it turns
out that the expansion in a �finite� sum of simple poles is
particularly suitable for evaluating the integrals by means of
contour integration using the residue theorem. For example,
finite temperature charge-density calculations only require
the evaluation of a Green’s function at a finite set of
energies8,9 given by the poles of the expansion. Recently the
same concept was used for the auxiliary density-matrix
propagation in the context of time-resolved electron transport
in molecular wires.10

The major disadvantage of the Matsubara expansion con-
sists in its poor convergence behavior, the error decreasing
only linearly with the number of terms in the expansion. To
overcome this issue other approximative expressions for the
Fermi function have been studied4–7 which also yield an ex-
pansion in terms of poles in the complex plane. For the re-
sulting approximate function one can discriminate between
band-Fermi functions with finite support4–6 and functions
which essentially cover the whole real line.2,7 Here we derive
an expansion of the Fermi function in terms of simple poles
with particularly simple coefficients. We will show that it
converges very rapidly with increasing order of the expan-
sion in a well-defined region which is found to increase lin-
early with the order.

For the following discussion it is convenient to write the
Fermi function f��� in terms of a dimensionless variable x,

f�x� =
1

1 + ex with x =
� − �

kT
, �1�

where � is the chemical potential, T is the temperature, k is
the Boltzmann factor, and � denotes the energy. The expan-
sion consists in finding a partial fraction decomposition
�PFD� with simple poles of the form

f�x� =
1

2
− �

p=−�

�
Ap

x − xp
, �2�

where Ap are expansion coefficients and xp are �possibly
complex� poles. For practical purposes the sum over p is
truncated and the Fermi function is approximated by f�x�
� fN�x� with N being the number of terms in the expansion.

For example, the well-known Matsubara expansion2 is
given in terms of the purely imaginary zeros xn of the de-
nominator in Eq. �1�, xp= ı��2p−1�, which yields coeffi-
cients Ap=1 and gives

fN�x� =
1

2
− �

p=1

N � 1

x + ı��2p − 1�
+

1

x − ı��2p − 1�� . �3�

For N→� in Eq. �3� the expansion becomes exact. However,
the convergence is very slow, which renders the application
of this expansion impractical especially for low tempera-
tures. Specifically, denoting by

�fN�x� = f�x� − fN�x� �4�

the deviation of the finite expansion from the exact function,
one finds for the Matsubara expansion �fN�x��1 /N.
For the band-Fermi function4 this can be improved5 to
�fN�x��1 /N2.

II. PARTIAL FRACTION DECOMPOSITION

The proposed PFD is obtained by first writing Eq. �1� as6

f�x� =
1

2
−

1

2
tanh�x/2� =

1

2
−

sinh�x/2�
2 cosh�x/2�

, �5�

and second by expanding numerator and denominator in a
power series, truncating the respective sums, such that the
degree of the polynomial in the denominator is larger than
the degree of the numerator polynomial. This procedure
gives

fN�x� =
1

2
−

1

2

PN−1�x/2�
QN�x/2�

, �6�

with polynomials
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PN�x� = �
m=0

N
x2m+1

�2m + 1�!
and QN�x� = �

m=0

N
x2m

�2m�!
. �7�

This construction allows for a PFD, i.e., an expansion of the
form

PN−1�x/2�
QN�x/2�

= �
p=1

N � Ap

x/2 − xp
+

Bp

x/2 + xp
� . �8�

Here, �xp are the zeros of the polynomial QN, which appear
in pairs since QN contains only even powers of x /2. It can be
shown that the zeros can be obtained as xp=	zp, whereby the
zp are the eigenvalues of the following matrix6 with i , j
=1, . . . ,N

Zij = 2i�2i − 1�� j,i+1 − 2N�2N − 1��iN. �9�

The eigenvalues can be efficiently calculated using standard
methods. In Fig. 1 we have plotted the poles of Eq. �8�, given
as �2xp= �2	zp, for three sets of eigenvalues zp for differ-
ent sizes N�N of the matrix Zij. As can be seen from the
figure some of the poles �2xp arising from the PFD are
purely imaginary and are close to the Matsubara poles. On
the other hand there are also poles with a nonvanishing real
part, which display an irregular distribution. These very
poles improve considerably the approximation for the Fermi
function as we show below.

It remains to determine the corresponding expansion co-
efficients Ap and Bp in Eq. �8�. Multiplying both sides of this
equation by �x /2−xk� and letting x→2xk leaves on the right
side of Eq. �8� only the term Ak, which is thus given as

Ak = lim
x→2xk

�x/2 − xk�
PN−1�x/2�
QN�x/2�

= lim
	→0

	PN−1�xk + 	�
QN�xk + 	�

.

�10�

By means of the definitions 
Eq. �7�� one finds from this
limit Ak�1 and similarly Bk�1. Thus we arrive at the main
result of this Brief Report: The Fermi function can be ap-
proximated by the finite sum

fN�x� =
1

2
− �

p=1

N � 1

x + 2	zp

+
1

x − 2	zp
� , �11�

with zp the eigenvalues of matrix, Eq. �9�. The formal struc-
ture of this approximation is similar to the Matsubara expan-
sion, Eq. �3�. However, taking advantage of having complex
rather than purely imaginary poles makes the PFD for given
order N of the expansion vastly superior to the Matsubara
expansion. This can be seen in Fig. 2, where we have shown
both expansions for different orders N. Whereas the Matsub-
ara expansion, Eq. �3�, in Fig. 2�a� does not give a reasonable
representation for any of the orders shown, the PFD expan-
sion, Eq. �11�, in Fig. 2�b� improves rapidly with increasing
order.

III. CONVERGENCE PROPERTIES

From Fig. 2 it becomes clear that the PFD is indeed con-
verging faster than the Matsubara expansion. In the follow-
ing we will quantify the rate of convergence as N→� and
give a range for x where this convergence behavior can be
expected.11 Regarding the PFD one makes two observations:
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FIG. 1. Poles �symbol �� of

the PFD expansion, i.e., �2	zp,
with zp the eigenvalues of matrix,
Eq. �9�, for various orders N. For
comparison the purely imaginary
poles �symbol �� of the Matsub-
ara expansion, Eq. �3�, are shown
as well. Note the different scales
of the three graphs.
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FIG. 2. Approximated Fermi function fN�x� for expansion orders N=2,8 ,32,128 �full lines�. Panel �a�: Matsubara expansion, Eq. �3�,
panel �b�: partial fraction decomposition, Eq. �11�. The curves are shown for x
0 only and are vertically shifted by 0.2 for better visibility.
The exact Fermi function, Eq. �1�, is denoted by dotted lines.
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First, in terms of the scaled variable y=x /4N one finds in the
limit of large N,

lim
N→�

�fN�x = y4N�

= 0 for
x

4N
= y � − 1

1

2
�1 +

4N

x
� =

1

2
�1 +

1

y
� for

x

4N
= y � − 1� .

�12�

The asymptotic function �12� is shown along with deviations
�fN�y� for various finite N in Fig. 3. Second, in the range
−4N�x, i.e., −1
y, the rate of convergence is given by the
asymptotic expression

�fN�x = y4N� �
�x/2�2N

�2N�!
=

�y2N�2N

�2N�!
, �13�

which due to the factorial in the denominator decreases faster
than exponential. Equations �12� and �13� are the main re-
sults of this section. They corroborate the statement that the
PFD is expected to yield a better convergence and allow to
estimate the error in actual calculations.

In the remaining part of this section we will justify and
discuss Eqs. �12� and �13�. Considering the case y
−1, one
finds from Eq. �11�, that a finite expansion behaves as
fN�x��1 /x for x→−�. Since the Fermi function gives f�x�
=1 for x→−� one expects qualitatively the behavior given
in Eq. �12�. This holds true for any expansion resulting in a
finite sum over simple poles including the Matsubara expan-
sion, which is shown for N=128 as dotted line in Fig. 3. In
order to verify that this behavior is indeed restricted to y

−1, or equivalently to x�−4N, we write the polynomial QN
from Eq. �7� explicitly as

QN�x/2� = QN�y2N� = �
m=0

N

qmN�y�

with

qmN�y� =
�2N�2m

�2m�!
y2m. �14�

Assuming y
−1, we see that the ratio of two successive
terms

qmN�y�
qm−1N�y�

= y2 �2N�2

2m�2m − 1�
�15�

is always larger than 1; the terms are monotonically increas-
ing. Thus terms with m1 dominate the sum and we replace
the coefficients in qmN by the coefficient from qNN, i.e., in-
stead of the sum 
Eq. �14�� we define

Q̃N�y2N� = �
m=0

N

q̃mN�y�

with

q̃mN�y� =
�2N�2N

�2N�!
y2m. �16�

It turns out that in the limit N→� this sum becomes equal to
QN�y2N�, which can be seen by considering the difference of
the newly defined terms in Eq. �16� from the original terms
in Eq. �14�. For m=N−n one gets

1 −
qN−n,N�y�
q̃N−n,N�y�

= 1 − �2N�−2n �2N�!
�2N − 2n�!

=
n/2 − n2

N
+ O� 1

N2� .

�17�

This expression vanishes for n=0 and can be made arbi-
trarily small by increasing N for all n�N. Terms with larger
n can be neglected because they are exponentially small
compared to those with smaller n. Since the sum 
Eq. �16�� is
a geometric series we obtain for N→�

QN�y2N� = Q̃N�y2N� =
y2

y2 − 1
qNN�y� . �18�

Analogous considerations for the other polynomial from Eqs.
�7� yield

PN−1�y2N� �
�2N�2N−1

�2N − 1�!
y2N+1

y2 − 1
=

y2

y2 − 1
pN−1,N�y� �19�

with pmN�y�= �y2N�2m+1 / �2m+1�! and we get as an approxi-
mation for the ratio, once again using N1,

PN−1�y2N�
QN�y2N�

�
1

y
=

4N

x
, �20�

which explains the asymptotic behavior of �fN�x� in Eq. �12�
for x
−4N.

Turning now to the case y�−1, we first note that there is
a crossover for the ratio 
Eq. �15�� at �y�N; whereas for m

 �y�N the terms are increasing, they decrease for m� �y�N.
Thus, for large N the polynomial expression �6� converges to
the exact expression �5� and the deviation �fN�x� vanishes as
given by Eq. �12� for x�−4N. In order to quantify the rate of
convergence it is useful to define complementary sums to PN
and QN, namely,
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y=x/4N
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0.3
δf

N
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)

(from right to left)

Matsubara N=128
PFD N=2,8,32,128
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FIG. 3. Deviation �fN of the approximated Fermi function form
the exact one as defined in Eq. �4� as a function of the scaled
argument y=x /4N for N=2,8 ,32,128 �solid lines� and the
asymptotic expression �dashed line� as given by Eq. �12�. The dot-
ted line shows �f128 for the Matsubara expansion.
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P̄N�x� = �
m=N+1

�
x2m+1

�2m + 1�!
and Q̄N�x� = �

m=N+1

�
x2m

�2m�!
.

�21�

Therewith the deviation reads

�fN�y4N� =
sinh�y2N� − P̄N−1�y2N�

2 cosh�y2N� − 2Q̄N�y2N�
−

sinh�y2N�
2 cosh�y2N�

� e−y2N
Q̄N�y2N� − P̄N−1�y2N�� . �22�

The approximation in the second line applies to large values
of N. We can choose, for any given y
0, N sufficiently large
such that exp�−y2N�exp�+y2N�. The infinite sums defined
in Eq. �21� become small compared to the exponentials,

Q̄N�y2N��1�exp�−y2N� and P̄N−1�y2N��1�exp�−y2N�.
It remains to estimate their behavior for large N which can be
done in analogy to the considerations for QN and PN, cf. Eqs.
�18� and �19�. Here the ratio of successive terms as defined in
Eq. �15� is always smaller than 1 and the first terms in the
sum can be used to estimate the sums. One gets

P̄N�y2N� �
pN,N�y�
1 − y2 and Q̄N�y2N� �

qN+1,N�y�
1 − y2 .

�23�

This directly leads to Eq. �13� and concludes the derivation.
Figure 4 shows this estimate along with the numerically

calculated deviation �fN as a function of the expansion order
N for selected values of x. Even for small values of N an
overall good agreement is found. Moreover, one sees that the
deviation �fN is of order 1 as long as N
−x /4. However, for
N�−x /4 �this is where the dashed lines start� it decreases
very rapidly due to the factorial in the denominator in Eq.
�13�.

IV. CONCLUSIONS

We have proposed the expansion, Eq. �11�, of the Fermi
function, Eq. �1�, by using a partial fraction decomposition.
Its application requires only the diagonalization of a matrix,
given in Eq. �9�, which has the same dimension N as the
expansion. The expansion converges faster than exponential
with increasing order N for arguments �x�
4N. In other
words, the approximation becomes not only more accurate
for higher orders, it can also be used for a wider range of
arguments. An estimate for the error is explicitly given by
Eq. �13�. Due to the beneficial convergence properties and
the straightforward implementation we expect the PFD to be
of great value in any application based on an expansion of
the Fermi function as sum of over simples poles. Finally, we
would like to notice that an analogous expansion can be
found for the Bose-Einstein distribution.
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FIG. 4. Deviation �fN of the approximated Fermi function form
the exact one as defined in Eq. �4� as a function of the expansion
order N for three arguments x=−5,−25,−125. We compare the
Matsubara expansion �dotted lines� and PFD �solid lines�. For the
latter case we show also the asymptotic behavior according to Eq.
�13� by dashed lines.
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